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Received 20 October 1989 

Abstract. It is proved that when the Hilbert space of quantum mechanics is a reproducing 
kernel Hilbert space of functions defined on the phase space, the generating function of 
the entropy can be used as a measure of the concentration of the wavefunctions in the 
phase space. The sharp upper bound obtained for the generating function of the entropy 
proves that the wavefunctions cannot be arbitrarily peaked in the phase space. The most 
peaked wavefunctions are those defined by the reproducing kernels. 

There are many cases in which quantum theory is formulated on a subspace of the 
Hilbert space of square-integrable functions defined on the phase space [l]. This 
subspace is determined by a projection operator which is an integral operator. The 
kernel of this operator is called the reproducing kernel since by definition it reproduces 
all elements of the subspace. The best known example is the Bargmann representation 
of the canonical commutation relations [2] which is a holomorphic coherent-state 
representation associated with the square-integrable representations of the Heisenberg- 
Weyl group [3]. Other holomorphic coherent-state representations often considered 
in quantum mechanics are those associated with the square-integrable representations 
of the groups SU(1, l )  and SU(2). In these examples the phase space A is C, the unit 
disc and the Riemann sphere Q= U (00) respectively. The wavefunctions are the elements 
of the reproducing kernel Hilbert space gP of functions defined on A which are of 
the following form: 

with z = x + iy and f and k holomorphic functions on A. These wavefunctions are 
square-integrable with respect to the Lebesgue measure dx dy on A. The parameter 
@ defines uniquely the generalised dimension dim@) of the corresponding square- 
integrable representation of each of the three groups enumerated above [3]. Namely, 
dim(@) = p for the Heisenberg-Weyl group and dim(p) = p - 1 with p a real positive 
number for the group S U ( 1 , l )  and for the group SU(2) the generalised dimension 
coincides with the ordinary dimension: dim(@) = 2p + 1,  where @ takes integer and 
semi-integer values. 

The uncertainty relations for wavefunctions on the phase space are a quantitative 
formulation of the intuitive idea that the probability density defined on the phase space 
by the square of the modulus of such a wavefunction cannot be arbitrarily peaked in 
the phase space. 
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In the present letter we shall use as a measure of the concentration of the probability 
density on A, defined by Pp(x, y )  = /%(x, y)12, the generating function of the entropy 
~41:  

G,(P,) = T- '  dim@) 5 P(x, y)'  dx dy 

where r is a real positive number. 
The uncertainty relations are sharp inequalities of the following type: 

Gr(P,)c  F ( r ,  P )  (3) 

with F ( r ,  P )  independent of Pp and such that there exist wavefunctions for which the 
equality holds in (3). 

Let us denote by Zp the Hilbert space of holomorphic functions f on A which 
appear in (1) and with the norm defined by 

The Hilbert space Zo is a reproducing kernel Hilbert space with the reproducing kernel 
given by k p ( G z )  with w E A. 

In order to obtain the uncertainty relations of the kind described above we shall 
use the following theorem, proved in [ 5 ] .  

I f f  E Zp and h E Zpr then f h  E Xp+p,  and 

The equality holds if and only if either f h  = 0 or f and h are of the forms f = C, kp (Gz), 
h = C,kp (az) for some w E A and some non-zero constants C, and Cz . 

As a corollary one obtains [ 5 ]  for any natural number n: 

l l fn l lnp  s I l f l l i  (6) 

with the equality either for f=  0 or whenf= Ck,( Gz) for some w E A and some non-zero 
constant C. 

In terms of the generating function for the entropy, the inequality (6) gives the 
following uncertainty relation: 

Gn(Pp)sdim(P)/dim(np) .  (7) 

Pp(X, Y )  = I ~ p ( ~ ' z ) I 2 ~ p ( / Z l 2 ) - ' .  (8) 

The equality holds in ( 7 )  either when n = 1 or when 

Hence the most concentrated wavefunction is the reproducing kernel. This result is 
in agreement with intuition. Indeed, the reproducing kernel is a smooth analogue of 
a distribution with the probability density concentrated on a single point. 

For the sake of completeness we give the functions kp(  z )  in each of the three cases 
considered above: kp ( z )  = exp(pz) in the case of the Heisenberg- Weyl group, kp (z) = 
(1 - z)-' in the case of the SU(1, l )  group and k p ( z )  = ( 1  + z)'@ in the case of the 
SU(2) group. 
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